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• Starlight suppression for exoplanet imaging using an external occulter
• Independent spacecraft, formation flying with a space telescope
• Desired starshade diameters ~ 10s of meters ⇒ deployable system

Introduction: Starshade
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Telescope

Starshade

Separation ~ 104—105 km Diameter ~ 10—100 m



Starshade Deployment Concept
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Telescope

Starshade

Separation ~ 104—105 km Diameter ~ 10—100 m

https://exoplanets.nasa.gov/resources/1015/flower-power-nasa-reveals-spring-starshade-animation/



Starshade Inner Disk Unfolding Concept
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Reference Mission Concepts for Starshade Technology
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• WFIRST Rendezvous Probe concept –
Starshade Rendezvous Mission (SRM):

• Telescope diameter: 2.4 m
• Separation: 26,000 km
• Starshade: 26 m diameter, 8 m-long petals, 

10 m-diameter inner disk
• Habitable Exoplanet Observatory (HabEx) 

concept starshade:
• Telescope diameter: 4 m
• Separation: 76,600 km
• 52 m diameter, 16 m-long petals, 20 m-

diameter inner disk
• This work is relevant to SRM at full-scale 

and to HabEx at half-scale



Background
• S5 (Starshade-to-TRL 5) activity within NASA’s Exoplanet Exploration Program 

will bring starshade technology to Technology Readiness Level 5 (TRL5)

• Technology milestones across three areas:
1. Optical testing and modeling of starlight suppression
2. Formation flying between a space telescope and a starshade
3. Stable and accurate deployable mechanical system

• Activities are underway to address these milestones

• We address Milestone 7C, related to the mechanical deployment accuracy of 
the starshade Inner Disk Subsystem (IDS)
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Objective
• Address Milestone 7C of S5 Technology Development Plan through the 

repeated deployment and measurement of a full-scale IDS prototype

• Milestone 7C: Inner Disk Subsystem with optical shield assembly that includes 
deployment critical features demonstrates repeatable deployment accuracy
consistent with a total pre-launch petal position accuracy within ± 300 µm

• Petal position accuracy errors applied at the petal attachment hinges
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Error component Allocation (μm)
Radial bias 35
Radial random 150
Tangential random 120
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Experimental Apparatus
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IDS Prototype
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Deployed Stowed



IDS Prototype Comparison to SRM Concept
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IDS Prototype SRM IDS

Deployed IDS diameter 10.6 m 9.8 m

Stowed IDS diameter 2.3 m 2.3 m

Stowed IDS height 1.2 m 1.4 m

Central cylinder diameter 1.3 m 1.6 m

Number of petals 28 24



Perimeter Truss
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• Stowed barrel form → deployed ring
• 4-bar linkage of each truss bay 

enables stowage and deployment
• Driven by a single cable, routed along 

the diagonals of all bays
• Cable gets reeled by a drive node

• Longerons and shorterons: CFRP with 
epoxy resin

• Nodes: CFRP plates bonded to 
aluminum center beam using epoxy



Spokes

15

• 4x 5.m-long spokes per node, 112 total
• Pulled into tension when deployed
• Provide a uniform tension field within the IDS for 

stiffness and precision
• Nominal spoke preload: 71 N (16 lbf)
• Comprised of unidirectional CFRP tape 6.35 mm 

wide, 0.10 mm thick
• CFRP: IM7 carbon fiber in a PEKK matrix
• Metal end-tabs bonded to CFRP tape using are 

bonded using PEI resin
• Protected by flexible braided PEEK sheath

• Manufactured in custom precision jig; standard 
deviation of prestressed length: 54 μm



Hub
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• Aluminum components bonded 
together:

• 2x spoke rings
• 1x central cylinder
• 2x flanges

• Spoke interfaces on the hub were 
shimmed after complete assembly

• Assuming a perfect truss, the 
residual shimming errors would 
result in spoke length errors of 
±200μm



Optical Shield (OS)
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• Primary light-block element of the IDS
• Planar panels hinges together with revolute joints

• Hinge placement (fold pattern) designed using modified origami algorithm
• Deployed conical surface wraps while accounting for material thickess



Optical Shield (OS)
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• Planar panels made from aluminum “picture frame”
• Frame is filled with an opaque blanket made from 2x Kapton layers and a 16 mm-thick 

polyurethane foam layer
• 32 mm-tall foldable aluminum ribs along major fold lines for out-of-plane bending stiffness
• Out-of-plane bending stiffness is important for offloading, decoupling the OS from truss



Gravity Compensation
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• Counterweighted at 140 discrete locations
• 4 offload points at each major fold line
• 1 offload point at each perimeter truss node

• Counterweight pulleys on wheeled carts, free to 
move along 28 overhead rails

• ~5 m above the perimeter truss (when deployed)
• Structural hub held by a fixture

• x, y, z translational degrees of freedom fixed
• Rotation about the x, y axes fixed
• Rotation about z-axis free; the hub needs to rotate 

relative to the perimeter truss during deployment as 
the OS is unwrapped



Metrology
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• Leica AT402 laser tracker used to measure the 3D location of the 
centers of spherically mounted retroreflectors (SMRs) affixed to the 
IDS prototype

• Maximum permissible error ±(15 µm + 6 µm/m of measurement range)
• In practice, the laser-tracker-reported 3σ uncertainty was approximately 

half the maximum permissible error for the same range

• 67 SMRs visible to the laser tracker 
• 22 SMRs attached to the middle petal interfaces on the truss longerons
• 12 SMRs attached to the end petal interfaces on the longerons
• 26 SMRs on the tops of the node
• 3 SMRs on the hub
• 4 SMRs fixed to the floors and the walls as reference markers



SMR locations
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Shimming
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• 8 rounds of measurement and shim adjustment were performed
• For each round of measurement, at least 3 partial deployments were conducted, establishing a 

mean deployed position for each petal interface SMR
• Based on these measured deployed locations, shim corrections were computed and implemented
• Each petal interface SMR was shimmed to reduce deviation between measured location and a 

nominal design location



Stowage and Deployment
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• 22 deployments performed at the final shim state
• 5x from a 96% stowed state
• 3x from a 82% stowed state
• 3x from a 49% stowed state
• 11x from a 8% stowed state

• Stow percent is defined as the angle between the longerons
when stowed, divided by 180°, which is the angle between 
the longerons when fully stowed

• Stow % = 100% is fully stowed
• Stow % = 0% is fully deployed

Timestamp Stow %
1 2019.07.17 8
2 2019.07.17 8
3 2019.07.17 8
4 2019.07.17 8
5 2019.07.18 8
6 2019.07.18 82
7 2019.07.22 8
8 2019.07.22 8
9 2019.07.22 8
10 2019.07.22 8
11 2019.07.23 8
12 2019.07.24 82
13 2019.07.25 82
14 2019.07.25 49
15 2019.07.26 49
16 2019.07.29 49
17 2019.08.08 8
18 2019.08.12 96
19 2019.08.15 96
20 2019.08.16 96
21 2019.08.20 96
22 2019.08.21 96
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80x

https://exoplanets.nasa.gov/resources/2218/10m-starshade-inner-disk-deployment/
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Data Processing
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• At the end of each deployment, the location of the SMRs was measured, by an automated 
program

• Automated program was run 3 times at the end of each deployment, thus taking 3 
independent passes

• The canonical deployed location of each SMR was taken to be the mean of the 
measurements from the 3 passes

• All SMR locations after a deployment were translated and rotated as a rigid body to best 
fit (in a least squares sense) the measured petal interface locations to the nominal petal 
interface locations



Definition of Deployment Errors
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• Accuracy: deviation between the measured locations and the nominal location
• Includes secular shape bias (shimming errors) that does not change between deployments

• Repeatability: deviation between the measured locations and the mean deployed location 
over all deployments

• Measure of random variation from deployment to deployment of the system



Tolerance Intervals
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• We compute the standard deviations of the radial and tangential components of the 
accuracy and repeatability errors

• Given the low sample size – 22 deployments in total – the standard deviations of the sample 
may differ greatly from the standard deviations of the underlying population

• To retire this uncertainty, tolerance intervals are employed
• A tolerance interval is a ±𝑘𝜎 region centered around the mean that will contain a percentage 
𝛾 of future members of a population with a confidence level defined by 1 − 𝛼 ; we use

• 𝛾 = 0.9973
• 1 − 𝛼 = 0.90

• For a sample size of 22 deployments, we get a tolerance interval of ±3.8596𝜎
• Compare to a well-sampled normal distribution, for which 99.73% of the population falls within ±3𝜎



Accuracy Errors at Petal Interfaces
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Accuracy Errors at Petal Interfaces
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Accuracy Errors at Petal Interfaces
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Repeatability Errors at Petal Interfaces
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Validity of Partial Stows
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Conclusions
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• IDS prototype was deployed 22 times and the locations of 34 petal interfaces on the IDS 
were measured after each deployment

• Tolerance intervals were calculated that would contain 99.73% of future deployment accuracy errors 
with 90% confidence

• All tolerance intervals were found to be within a 167 µm-radius circle
• This meets the ± 300 µm requirement set out in Milestone 7C, with 44% margin

• In-plane deployment repeatability of the petal interfaces errors fell within a 86 µm-radius 
circle

• Repeatability errors neglect shimming errors, which can be reduced in future efforts
• Repeatability errors represent the ultimate deployment accuracy capability of the IDS

• It was demonstrated that the required IDS deployment accuracy is achievable with an 
integrated optical shield
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